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The notion of purity in module theory was defined in terms of tensor prod-
uct.In [3 , Thm.2.4], P.M. Cohn proved that a submodule M of a left module
N (over a ring R) is pure if every finite system of linear equations HT = m
with coefficients in R and parameters from M is solvable in M if it is solvable
in N. Generally, if A and B are L-structures, where L is a first-order language,
a homomorphism f : A — B is said to be pure if for any positive primitive
formula ¢ and any tuple a from A, the validity of ¢(f(a)) in B entails that
of ¢(a) in A [12] .This notion of purity was applied to semimodules over an
arbitrary semiring and the existence of pure-injective semimodules was proved
[ 14 ,Thm.3].In fact, one can easily show that a subsemimodule M of a left
semimodule N (over a semiring R) is pure if every finite system of linear equa-
tions HT +m = KT + m with coefficents in R and parameters from M and
with a solution in N already has a solution in M. In the present paper, a
semimodule M is called absolutely pure if it is pure in every semimodule con-
taining it as a subsemimodule.Some well-known properties of absolutely pure
modules are extended to semimodules .For example , every semimodule has
a maximal absolutely pure subsemimodule.We introduce and study two par-
ticular subclasses of absolutely pure semimodules, namely strongly absolutely
pure (SAP) and finitely injective (f -injective) semimodules.A semimodule M
is f- injective if and only if M = li_)m X; ,where the X; are injective semimod-
ules and the morphisms of the directed system {X; }tare injective.When the
semiring R is additively idempotent ,the SAP R—semimodules are exactly the
f -injective semimodules.A characterization of Fieldhouse regular semimodules
is obtained.

1. Purity in Model theory

In this section, structure means structure for a given finitary similarity
type and L is the first-order language of that similarity type. For the basic
concepts of model theory we refer to [8]. Let us recall that if A and B are
L-structures, a homomorphism f : A — B is said to be pure if for any posi-
tive primitive (p.p. for short) formula and any tuple a from A, the validity of
¢(f(a)) in B entails that of ¢(a) in A [12]. Note that every pure map is an
isomorphic embedding, therefore these maps are also called pure embeddings.
A substructure A of a structure B is called pure if the inclusion of A in B is
pure.Elementary embeddings, that is, embeddings that preserve all first-order
formulas, are clearly pure.

Lemma 1.1 [10]

Let A and B be two L-structures. The following conditions are equivalent
for any embedding f: A — B.

(i) f is pure

(ii) There is an elementary embedding g : A — C that factors through
f (i.e. there is a homomorphism h : B — C' such that g = hf ).
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Remark 1.1
In (ii) above g can be taken to be the diagonal embedding of A into an
appropriate ultrapower of A [4, Th.6.4].

2. Purity in Semimodule Theory.

Let R = (R;+,.,0,1) be a semiring, i.e. (R;+,0) is a commutative monoid
with identity 0, (R; ., 1) is a monoid with identity 1, for all a, b, ¢ € R, a.(b+c) =
ab+a.cand (b+c¢).a =ba+ca, 0r =0 =r.0forall r € R, and 0 # 1.
Let R be a semiring. A left R-semimodule is a commutative monoid (M; +, 0)
for which we have a function R x M — M | denoted by (r,m) — r m and
called scaler multiplication, which satisfies the following conditions for all
elements 7 and s of R and all elements m and n of M: (1) (rs)m = r(sm);
(2) rtm+n) =rm+rn; 3) (r+s)ym = rm+sm; (4) 1 m = m; (5) r
0=0=0m. An element m of M is cancellable if m +m' = m + m” implies
that m" = m”. The semimodule M is cancellative if every element of M is
cancellable. If every element m € M has an additive inverse m’ € M, the
semimodule M is called an R-module.For the basic concepts of semirings and
semimodules we refer to [7].Throughout this paper, semimodule means left
semimodule over R. By ideal we mean a left ideal of R. By homomorphism,
we mean an R-homomorphism.We consider the one-sorted first-order language
Ly of left semimodules over a fixed arbitrary semiring R .Recall that a p.p.
formula ¢(7) is a formula of the form

O(F) = (1, - 0) = Fyr-ym( A WilT, 7)),

where 7 = (y1, ..., Ym) and ¥;(7,7) are atomic formulas, i = 1, ..., t.
One can easily show that every atomic formula ¥ (z1, ..., x,) of L is equiv-
alent, modulo the theory of semimodules, to an equation

n n
E ;T = E bix;,
i=1 i=1

where a;,b; are semiring elements. So, the p.p. formula ¢(Z) can be read as
saying there are elements 7 such that Ax + By = C7 + Dy, where A, C are
matrices (over R) of size t X n, B, D are matrices of size t X m, and T, are read
as column matrices of semimodule elements. Let M, N be two R-semimodules
and f : M — N be a pure embedding.This means that f is an injective R-
homomorphism, and for any p.p. formula ¢(Z) and each tuple m from M, if
there is a column matrix b (of elements of N) such that
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Af(m)+ Bb= Cf(m) + Db

then there is a column matrix ¢ (of elements of M) such that
Am+Bec=Cm+De

where f(m) = (f(m1), ..., f(my)).

The following results follow from the definition of purity.
Lemma 2.1

Let ¢(T) be a p.p. formula in L and M be an R-semimodule. Then

(i) M £ 6(0). ] )

(i) If M E ¢(a) and M E ¢(b), then M E ¢(a + b).

(iiii) If » € C(R), the center of R, and M F ¢(a), then M E ¢(ra), where
ra =r(ay,...,a,) = (ray, ..., ra,).

(iv) p(M) ={ae M" : M E ¢(a)} is a submonoid of (M, +).

(v) If R is commutative, ¢(M) is a subsemimodule of (M™, +).

(vi) If M is an R-module, ¢(M) is a subgroup of (M", +).

Lemma 2.2

Suppose that F,F' and G are semimodules over a semiring R such that
ECFcCAG.

(i) If £ is pure in F' and F is pure in G thenF is pure in G.

(ii) If F is pure inG thenE is pure in F.

3. Absolutely Pure Semimodules

Let R be a semiring and M be an R-semimodule . If W is the subsemi-
module of M x M defined by W = {(m,m)/m € M} then W induces an
R-congruence relation =y, on M x M, called the Bourne relation, defined by
setting (m,n) =y (m/,n’) if and only if there exist elements w and w’ of W
such that (m,n) +w = (m/,n') +w'.

If (m,n) € M x M then we write (m,n)/W instead of (m,n)/ =w.The
factor semimodule M x M/ =y is denoted by M x M/W. Since for all
(m,n) € M x M we have (m,n)/W + (n,m)/W = (0,0)/W, then M x M/W
is an R-module.This left R-module, denoted by M?%, is called the R-module
of differences of M.

Lemma 3.1 [7]

(i) A subsemimodule of a cancellative semimodule is cancellative .

(ii) Given a semimodule M, there is a homomorphism &,, of M into M*,
defined by &,,(m) = (m,0)/W .

(iii) &,, is an embedding if and only if M is cancellative .

Definition

Let T" be a class of R-semimodules. A semimodule M € T' is said to be
absolutely pure ( AP ),in I, if every embedding of M into a semimodule from
I', is pure .When I' is the class of all R-semimodules, M is said to be AP.
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Lemma 3.2

(i) A pure subsemimodule M of a module N is a module.

(ii) &, is a pure embedding if and only if M is a module over the semiring
R.

(iii) Any cancellative AP semimodule is a module .

Proof.

(i) : Consider the p.p.formula ¢(z1) = Jza(x1+ 22 = 0) ,and m € M.Since
N is a module ,then N F ¢(m),and so M F ¢(m).This means that m has an
additive inverse in M.

(ii) : The 7if” part follows from [7, Prop. 14.1] and Lemma 1. The "only
if " part follows from (i).

(iii) : It follows from (i) and (ii) .OJ

Definition

Let M be semimodule over a semiring R. For two elements a € R and
m € M , the pair (a,m) is said to be compatible if the equation az = m, has
a solution in an extension of M.

Lemma 3.3

Let M be a cancellative semimodule over a cancellative semiring R. The
following statements are equivalent for two elements a € R and m € M:

(i) The pair (a,m) is compatible

(ii) There is a homomorphism ¢ : Ra — M such that g(a) = m.

Proof.

(i) = (ii) There is z, in an extension of M such that ax, = m. So, if
r = ra = ta € Ra, then rm = razx, = taxr, = tm. Thus we may define
g : Ra — M by g(ra) = rm. Of course, g is a homomorphism and g(a) =
g(la) =m .

(ii) = (i): Let I = Ra,g : I — M and g(a) = m. We prove that there is
an extension V of M and there is z, € V such that az, = m in V. Let ¢ be
the inclusion mapping of I into R and consider the homomorphism a = £,,¢ :
I—M— M*”and B=¢Egi: I — R— R®. Wedefine f: 1 — M*> x R® by
f(#) = (a(t),—B(t)) Note that N = f(I) is a subsemimodule of M* x R and
N induces an R-congruence relation ”Bourne relation” on M* x R®. Let V be
the factor semimodule M* x R®/N. Let \: M — M x R — M* x R® — V;
u— (u,0) — (& (u),0) — (£4,(u),0)/N and pp: R — M x R — M*x R® —
Vir = (0,1) = (0,&x(r)) = (0,&x(r))/N.

We show that A is injective: Suppose A(u) = A(v). Then (&,,(u),0)/N =
(&3/(v),0)/N and so there are ny, ny € N such that (,,(u),0)+n; = (£,,(v),0)+
neIf ny = f(t1),n2 = f(ta), then we get &,,(u) + a(ty) = &y (v) + a(tz) and
—B(t1) = =B(t2).
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Since 3 is injective and M is cacellative, then &,,(u) = &,,(v), and so u = v.
This means that V' is an extension of M. We prove that u(1) is a solution of
the equation az = m in V, i.e. ap(l) = A(m).

Since (0, &g (a))+f(a) = (0,Er(a))+(a(a), —B(a)) = (a(a),0) = (E(g(a)),0) =
(64(m),0) = (£4,(m),0) + F(0), then (0,€x(a)/N = (E4y(m), 0)/N Thus,
p(a) = A(m), and so ap(1) = A\(m).OI

Definition [1]

An R-semimodule M is called P-injective if for any principal ideal I of R
and each homomorphism ¢ : I — M there exists a homomorphism f: R —

M ,which extends g.

Corollary 3.4
Every cancellative AP semimodule M over a cancellative semiring R is P-
injective.

Proof.

Let I = Ra ,a € R ,and g : I — M be a homomorphism . By the preceding
Lemma the equation ax = g(a) has a solution in an extension N of M , say ,
A: M — N Since M is AR, X is pure and so the equation az = g(a) has a
solution m, € M .We define a homomorphism h : R — M , by h(r) = r m,.For
any r = ta € I ,g(x) = tg(a) = tam, = h(z).Hence,h extends g and so M is
P-injective .[J

Corollary 3.5

Let M be a cancellative semimodule over a cancellative semiring R .The
following statements are equivalent:

(i) M is P-injective.

(ii)For any compatible pair (a,m) € R xM , the equation ® "ax =m
has a solution in M .

Proof.

(i) = (ii) : Suppose (a,m) is compatible .By Lemma 3.3 , there is a
homomorphism ¢ : Ra — M such that g(a) = m. Since M is P-injective
, there is a homomorphism f : R — M, extends g. Observe that ah(1l) =
h(a.l) = h(a) = g(a) = m ,and so h(1) € M is a solution of ®.

(i) = (i) :Let I = Ra ,a € R, g: 1 — M be any homomorphism and
m, = g(a).By Lemma 3.3, the equation ax = m, has a solution in an extension
of M.Under the hypothesis (ii), this equation has a solution u, € M.We define
a homomorphism h : R — M by h(r) = ru,.One easily sees that h extends
g.l

7

Proposition 3.6
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Every pure subsemimoduleM of a P-injective semimodule N is P-injective

Proof.

Let I = Ra ,a € R ;,and g : I — M be a homomorphism.Since ¢ : M C
N ,and N is P-injective , there exists a homomorphism f : R — N,which
extends ¢g .Hence , i g(a) = g(a) = f(a) = m, € M.Let f (1) =n, € N and
consider the equation ® : ax = m,.Since an, = af(l) = f(a.l) = f(a) = m,
, then ® has a solution in N.Observe that i : M C N is pure

and so ® has a solution u, € M ( ie. au, = m, ).Now,define a homo-
morphism h : R — M by h(r) = ru,.Since h(ra) = rau, = rm, = rga) =
g(ra) ,then h extends g and so M is P-injective.[]

In [14 , Thm.5],it was proved that the first order theory T" of cancellative
semimodules over an arbitrary semiring R has the amalgamation property. As
an application we have :

Proposition 3.7.

Every pure subsemimoduleM of a cancellative AP semimodule /N is AP in
the class of cancllative semimoules.

Proof.
Consider the following diagram , where fi, fo are the identical inclusions
,f1 is pure and H is a cancellative semimodule

Let (®)”AZ+m = Bx+m " be a finite system of linear equations with
coefficents in R and parameters from M and with a solution in H .By[14 ,
Thm.5], there is a cancellative semimodule F' and embeddings g; ,7 = 1, 2,such
that

the following diagram is commutative.

N
f1 g1
/! N\
M F
f\ /!
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It follows that (®)has a solution in F'. Since fiand gjare pure , (®) has a
solution in M and so M is AP in the class of cancellative semimodules.[]

Theorem 3.8.
i) IfXoCX;C ...CX3C..,0<a isa chain of AP semimodules ,
where « is an ordinal , then the union of the chain is AP.

(ii) Every semimodule has a maximal AP subsemimodule .
Proof.

(i) Let M = UXj and suppose that M C N.Let (®) : AT+m = BT+
be a finite system of linear equations with coefficents in R and parameters from
M and with a solution in N.There is an ordinal v such that the elements of the
column matrices T and ™’ are in X, C M C N .Therefore one can consider
® as a finite system of linear equations with coefficents in R and parameters
from X, and with a solution in NV .Since X, C N , ® has a solution in X, C M.

(ii) Given a semimodule E , consider the set © of all subsemimodules
of E that are AP semimodules.Observe that €2 is not empty , for the zero
semimodule belongs to 2.Partially order €2 by inclusion.If F is a chain in 2
then UF is AP by (i).Now the result follows by applying Zorn’s Lemma. [J

4. SAP Semimodules

In [2] , Azumaya introduced the notion of locally split homomorphisms to
study regular modules. Locally split submodules were introduced by Rama-
murthi and Rangaswamy [9], by the name of strongly pure submodules, to
study strongly absolutely pure (SAP) and finitely injective ( f -injective in the
sense of [13] ) modules. In this section we extend these notions for semimodules
over an arbitrary semiring.Let R be a semiring and M be an R-semimodule

M is said to be finitely injective ( f -injective for short ) if givn any injec-
tive homomorphism F' — Y,where F' is a finitely generated semimodule, any
homomorphism F — M can be extended to a homomorphism Y — M.Note
that every injective semimodule is f -injective. We call a subsemimodule M
of a semimodule N strongly pure if to any finite set {my, ..., my} of elements
of M there exists a homomorphism « : N — M such that a(m;) = m;
4 = 1,...,k.Finally, a semimodule M is said to be strongly absolutely pure
(SAP for short ) if M is stongly pure in every R-semimodule containg it as a
subsemimodule .

Proposition 4.1

Suppose that FE, I and G are semimodules over a semiring R such that
ECFcG.

(i) If F is strongly pure in F' and F' is strongly pure in G then E is strongly
pure in G .

(i) If £ is strongly pure in G then E is strongly pure in F .

(iii) If E is strongly pure in ' then E is pure in F.
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(iv) If E'is pure in F' ,where F'is a projective semimodule,then F is strongly
pure in F.

(v) If E is pure in F' ,where F is finitely generated and F' is projective,then
E is projective.

Proof.

(i) and (ii) are obvious. (iii) : Let (®) AT +u = BT+ 7 ” be a finite
system of linear equations with coefficents in R and parameters from E and
with a solution ¢ in F.Let {uq,...,us,v1,...,00} C E  be the elements of
the column matrices u ,7 .Under the hypothesis,there exists a homomorphism
a:F — E | such that

alu)) =u; , alv) =v; . It follows thatA a(¢) + w = B «(¢) + v ,and so
a(¢) is solution of ® in E .(iv): If f : E C F is pure, then by Lemma 1,there is
an ultrafilter u over an infinite set I and a homomrphism h : F' — E! /u such
that h f = § ,where § : E — E!/u is the diagonal embedding of E into an
ultrapower of E.Let ¢ : E! — E'/u be the canonical homomorpism.Since F'
is projective ,there exists a homomorphism ¢ : F — E’ such that ¢g = h.Let
{e1,...,en} be a finite

set of elements of E. Foreach e, ,1 <k <n,=0d(e;) = h(ex) = ¢g (e) =
g (ex)/u.Hence there exists a set € € u suchs that (g (ex))(i) = e for all i €
Q.Let Q =Ny € u, and define a homomorphisma =p; g: F — Ef — E |
where p; is the canonicl projection , i € Q.It follows that a(ey) = e, , 1 <k <n
,and so F is strongly pure in F' .

(v) : Let {ey,...,e,} be a finite set of generators of E.Since F C F is
strongly pure , there exists a homomorphism « : F' — FE such that a(e;) =
e; ,t =1,....,n.It follows that F is a retract of F' and so FE is projective.[]

Corollary 4.2

Every SAP semimodule is AP

Proposition 4.3

Let R be a semiring ,N be an R- module and M be a subsemimodule of
N .The following statements are equivalent :

(i) M C N is strongly pure.

(il) M C N is pure and for any element x, € M there exists a homo-
morphism

a: N — M such that a(z,) = z,.

Proof.

(i)== (ii) follows from Proposition 4.1.

(ii)== (i) :By Lemma 3.2(i) M is a module . Let {xy,...,z,} be any finite
set of elements of M .We prove by induction, suppose n > 2 and our statement
is true for n — 1. This means that there is a homomorphism « : N — M such
that a(zy) = xy for k = 1,2,...,n — 1.Since (z, — a(x,) ) € M , there is a
B : N — M such that f(z, — a(z,)) = ©, — a(z,) Let 6 = a+ 5 —[i «
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: N — M ,where ¢ : M C N is the inclusion map.Then for any k,k =
L2, ,n—1,0(zx) = a(zk) + B(zx) — fi a(xy) =z, + B(zx) — B(x) = 2. And
Mzk) = alzn) + B(xn) — Fi alx,) = a(z,) + Bz, — a(x,)) = alz,) + x, —
a(x,) = x,.Thus M is strongly pure in N .[J

The following result connects finite injectivity with strong purity.

Proposition 4.4

Every f -injective semimodule is SAP.

Proof.

Let M C N , where M is an f -injective semimodule.For any finite set
T ={my,...,my} of elements of M | let F' be the semimodule generated by
T.Consider the inclusion maps f : I C N and j : FF — M.There exists a
homomorphism « : N — M such that af = j .Observe that a(z) = z,for all
r € F, and so M is SAP.OJ

Proposition 4.5

Every f -injective semimoduleM contains an injective hull of each of its
finitely generated subsemimodule.

Proof.

Let F' C M be a finitely generated subsemimodule of M with an injective
hull £. Consider the inclusion maps ¢ : F' C M and j : F C E.Since M is
f -injective semimodule,there exists a homomorphism h : E — M such that
hj = 1. Observe that h is injective since 7 is injective and j is essential.[J

Corollary 4.6

Every finitely generated f -injective semimodule M is injective.

Theorem 4.7

i) If Xo Cc X3 C ... C Xg C ..,0 <« isa chain of f -injective
semimodules , where « is an ordinal , then the union of the chain is f -injective.

(ii) Every semimodule has a maximal f -injective subsemimodule

(iii) A semimodule M is f -injective if and only if M = li_)m X; ,where the
X; are injective semimodules and the morphisms of the directed system {X;
}are injective.

Proof.

We prove only (iii). Note that M = h_)m{ F, ,ai; },i,5 € I ;where { F; }is
the family of all finitely generated subsemimodules of M and the morphisms
{ Qi _ tare the inclusion maps.Since M is f —1nJect1ve it contains an injective
hull ; of each F; . One can easily check that M =U F; and the a;j: Fy — F;
induce injective homomorphisms Qj - E — Fj ,such that {FZ, a;;} is a directed
system and M = hﬂm{ E, 4.0

Remark. 4.1

If R is a ring ,then it is well-known that every R -module is contained in
an injective R- module. However ,for arbitraty semirings R this not the case
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; e.g. there are no nonzere injective N -semimodules. In [11],H.Wang proved
that every R -semimodule has an injective hull ,in the case that R is additvely
idempotent (i.e. a semiring satisfying = +r = r for all r € R).For these
semirings we prove the convrse of Proposition 4.4.

Theorem 4.8

Let R be an additvely idempotent semiring. Then an R-semimodule M is
f -injective if and only if M is SAP.

Proof.

Suppose M is SAP Let i : £ C Y,with F finitely generated by {el, .. en}
and g : £ — M .Let M be the e injetive hull of M and j : M — M .Since M
is injective , there is h : Y — M , such that hi = jg .Note that {g(ex) : 1 <
k <n} C M and M is SAP . Hence there exists a homomorphism « : M — M
such that a(g(ex)) = g(ex) ,1 < k < n.One can easily show

that § = ah extends g and so M is f -injective.[]

5. Regular Semimodules

A semiring R is said to be von Neumann regular if for each a € R, there
is some b € R such that a = aba. In [6], Fieldhouse generalized the concept of
Von Neumann’s regular rings to the module case : a module M ( over a ring
) is said to be regular if every submodule of M is pure in M . We extend this
concept to semimodules ove an arbitrary semiring R.An R- semimodule M is
said to be Fieldhouse regular if every subsemimodule of M is pure in M .

Theorem 5.1

For any R- semimodule M the following statements are equivalent :

(i) M is Fieldhouse regular.

(ii) Every finitely generated subsemimodule of M is pure in M.

If M is projective one can add :

(iii) Every finitely generated subsemimodule of M is a retract of M.

Proof.

(i)= (ii) is trivial.

(ii)== (i) : Let £ C M . Note that E = 11_>m{ F; oy },i,5 € I ,where
{ F, } is the family of all finitely generated subsemimodules of M and the
morphisms { «;; }are the inclusion maps.To show that E is pure in M ,
let (®) "AT +u = BT+ 7 7 be a finite system of linear equations with
coefficents in R and parameters from E and with a solution m in M. Let
{uy, ..., us,v1,...,0.} C E  be the elements of the column matrices @ , .

There is k € I such that{uy,...,us,vy,...,v:} C F, C E C M .Therefore
one can consider ® as a finite system of linear equations with coefficents in R
and parameters from/F}, and with a solution in M.SinceF}, is pure M , ® has
a solution in

Fy . Thus E is pure in M and so M is Fieldhouse regular. Now suppose
M is projective Fieldhouse regular and F is a finitely generated subsemimodule
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of M .Let {ey,...,e,} be a finite set of generators of F.By Proposition 4.1,
E C M is strongly pure , thus there exists a homomorphism o : M — FE
such that a(e;) = ¢; ,i = 1,...,n.It follows that F is a retract of M .00

Corollary 5.2

For any semiring R consider the following statements :

(i) Every ideal of R is stongly pure in g R

(ii) R is Fieldhouse regular.

(iii) Every principal ideal of R is pure in R.

(iv) R is Von Neumann regular.

Then (i) <= (ii) = (ili) <= (iv).

Proof.

(i)=(ii) and (ii) =  (iii) are tivial . (ii) = (i ) follows from
Proposition 4.1.

(iii) = (iv) : For each a € R, Ra is a pure subsemimodule of the R-
semimodule rR.The equation ax + 0 = 0z + a, with parameters from Ra, has
a solution (z = 1) in gR. So, it has a solution in Ra. This means that there
is x, = ra € Ra, for some r € R, such that ax, = a .Thus ara = a, and so R
is von Neumann regular

(iv) = (iii): Suppose R is von Neumann regular and I = Ra. There is
b € R such that a = aba. Let e = ba and note that e* = baba = ba = e. Hence
I = ReIf 0 : Re — grR is the inclusion map and « :gp R — Re, a(r) = re, then
o) = 1ge

This means that I = Re is a retract of g R, and, in particular, I is pure in
R.OJ

Corollary 5.3
If every R-semimodule is AP then R is von Neumann regular.
Remark 5.1
For any ring R, the converse of the precding Corollary is true [5].On the
other hand, the semiring R = Q™ is von Neumann regular and M = rR is
not AP.
Remark 5.2
For any cancellative semiring R the following statements are equivalent :
(i) Every R- semimodule is AP.
(ii) Every cancellative R—semimodule is AP.
(iii) R is a regular ring.
Semimodules over rins are modules, so (iii) = (i) follows . (i) ==(ii) is
obvious.
Now suppose (ii) , then zR is a module ,i.e. R is a ring.Indeed, R is a
regular ring.
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