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The notion of purity in module theory was de�ned in terms of tensor prod-
uct.In [3 , Thm.2.4], P.M. Cohn proved that a submodule M of a left module
N (over a ring R) is pure if every �nite system of linear equations Hx = m
with coe¢ cients in R and parameters from M is solvable in M if it is solvable
in N . Generally, if A and B are L-structures, where L is a �rst-order language,
a homomorphism f : A ! B is said to be pure if for any positive primitive
formula � and any tuple �a from A, the validity of �(f(�a)) in B entails that
of �(�a) in A [12] .This notion of purity was applied to semimodules over an
arbitrary semiring and the existence of pure-injective semimodules was proved
[ 14 ,Thm.3].In fact, one can easily show that a subsemimodule M of a left
semimodule N (over a semiring R) is pure if every �nite system of linear equa-
tions Hx +m = Kx +m0 with coe¢ cents in R and parameters from M and
with a solution in N already has a solution in M . In the present paper, a
semimodule M is called absolutely pure if it is pure in every semimodule con-
taining it as a subsemimodule.Some well-known properties of absolutely pure
modules are extended to semimodules .For example , every semimodule has
a maximal absolutely pure subsemimodule.We introduce and study two par-
ticular subclasses of absolutely pure semimodules, namely strongly absolutely
pure (SAP) and �nitely injective (f -injective) semimodules.A semimodule M
is f - injective if and only if M = lim

!
Xi ,where the Xi are injective semimod-

ules and the morphisms of the directed system {Xi }are injective.When the
semiring R is additively idempotent ,the SAP R�semimodules are exactly the
f -injective semimodules.A characterization of Fieldhouse regular semimodules
is obtained.

1. Purity in Model theory
In this section, structure means structure for a given �nitary similarity

type and L is the �rst-order language of that similarity type. For the basic
concepts of model theory we refer to [8]. Let us recall that if A and B are
L-structures, a homomorphism f : A ! B is said to be pure if for any posi-
tive primitive (p.p. for short) formula and any tuple �a from A, the validity of
�(f(�a)) in B entails that of �(�a) in A [12]. Note that every pure map is an
isomorphic embedding, therefore these maps are also called pure embeddings.
A substructure A of a structure B is called pure if the inclusion of A in B is
pure.Elementary embeddings, that is, embeddings that preserve all �rst-order
formulas, are clearly pure.

Lemma 1.1 [10]
Let A and B be two L-structures. The following conditions are equivalent

for any embedding f : A! B.
(i) f is pure
(ii) There is an elementary embedding g : A ! C that factors through

f (i.e. there is a homomorphism h : B ! C such that g = hf ):
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Remark 1.1
In (ii) above g can be taken to be the diagonal embedding of A into an

appropriate ultrapower of A [4, Th.6.4].

2. Purity in Semimodule Theory.
Let R = (R; +; :; 0; 1) be a semiring, i.e. (R; +; 0) is a commutative monoid

with identity 0, (R; :; 1) is a monoid with identity 1, for all a; b; c 2 R, a:(b+c) =
a:b + a:c and (b + c):a = b:a + c:a, 0:r = 0 = r:0 for all r 2 R; and 0 6= 1.
Let R be a semiring. A left R-semimodule is a commutative monoid (M ; +; 0)
for which we have a function R �M ! M , denoted by (r;m) 7�! r m and
called scaler multiplication, which satis�es the following conditions for all
elements r and s of R and all elements m and n of M : (1) (rs)m = r(sm);
(2) r(m + n) = rm + rn; (3) (r + s)m = rm + sm; (4) 1 m = m; (5) r
0 = 0 = 0 m. An element m of M is cancellable if m +m0 = m +m00 implies
that m0 = m00. The semimodule M is cancellative if every element of M is
cancellable. If every element m 2 M has an additive inverse m0 2 M , the
semimodule M is called an R-module.For the basic concepts of semirings and
semimodules we refer to [7].Throughout this paper, semimodule means left
semimodule over R. By ideal we mean a left ideal of R. By homomorphism,
we mean an R-homomorphism.We consider the one-sorted �rst-order language
LR of left semimodules over a �xed arbitrary semiring R .Recall that a p.p.
formula �(x) is a formula of the form

�(x) = �(x1; :::; xn) = 9y1:::ym(
t
^
i=1
	i(x; y)),

where y = (y1; :::; ym) and 	i(x; y) are atomic formulas, i = 1; :::; t.
One can easily show that every atomic formula 	(x1; :::; xn) of LR is equiv-

alent, modulo the theory of semimodules, to an equation

nX
i=1

aixi =
nX
i=1

bixi,

where ai; bi are semiring elements. So, the p.p. formula �(x) can be read as
saying there are elements y such that Ax + By = Cx + Dy, where A;C are
matrices (over R) of size t�n, B;D are matrices of size t�m, and x; y are read
as column matrices of semimodule elements. Let M;N be two R-semimodules
and f : M ! N be a pure embedding.This means that f is an injective R-
homomorphism, and for any p.p. formula �(x) and each tuple m from M , if
there is a column matrix b (of elements of N) such that



4 M. Zayed, S. A. Bashammakh and A. Y. Abdelwanis

Af(m) +Bb = Cf(m) +Db
then there is a column matrix c (of elements of M) such that
A m+B c = C m+D c
where f(m) = (f(m1); :::; f(mk)).

The following results follow from the de�nition of purity.
Lemma 2.1
Let �(x) be a p.p. formula in LR and M be an R-semimodule. Then
(i) M � �(0).
(ii) If M � �(a) and M � �(b), then M � �(a+ b).
(iiii) If r 2 C(R), the center of R, and M � �(a), then M � �(ra), where

ra = r(a1; :::; an) = (ra1; :::; ran).
(iv) �(M) = fa 2Mn :M � �(a)g is a submonoid of (Mn;+).
(v) If R is commutative, �(M) is a subsemimodule of (Mn;+).
(vi) If M is an R-module, �(M) is a subgroup of (Mn;+).
Lemma 2.2
Suppose that E,F and G are semimodules over a semiring R such that

E � F � G:
(i) If E is pure in F and F is pure in G thenE is pure in G:
(ii) If E is pure inG thenE is pure in F:
3. Absolutely Pure Semimodules
Let R be a semiring and M be an R-semimodule . If W is the subsemi-

module of M � M de�ned by W = f(m;m)jm 2 Mg then W induces an
R-congruence relation �W on M �M , called the Bourne relation, de�ned by
setting (m;n) �W (m0; n0) if and only if there exist elements w and w0 of W
such that (m;n) + w = (m0; n0) + w0.
If (m;n) 2 M �M then we write (m;n)=W instead of (m;n)= �W .The

factor semimodule M � M= �W is denoted by M � M=W . Since for all
(m;n) 2M �M we have (m;n)=W + (n;m)=W = (0; 0)=W , then M �M=W
is an R-module.This left R-module, denoted by M�, is called the R-module
of di¤erences of M .

Lemma 3.1 [7]
(i) A subsemimodule of a cancellative semimodule is cancellative .
(ii) Given a semimodule M , there is a homomorphism �M of M into M�,

de�ned by �M(m) = (m; 0)=W .
(iii) �M is an embedding if and only if M is cancellative .

De�nition
Let � be a class of R-semimodules. A semimodule M 2 � is said to be

absolutely pure ( AP ),in �, if every embedding of M into a semimodule from
�, is pure .When � is the class of all R-semimodules, M is said to be AP.
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.

Lemma 3.2
(i) A pure subsemimodule M of a module N is a module.
(ii) �M is a pure embedding if and only if M is a module over the semiring

R:
(iii) Any cancellative AP semimodule is a module .
:
Proof.
(i) : Consider the p.p.formula �(x1) = 9x2(x1+x2 = 0) ,and m 2M:Since

N is a module ,then N � �(m),and so M � �(m):This means that m has an
additive inverse in M:
(ii) : The �if�part follows from [7, Prop. 14.1] and Lemma 1. The "only

if " part follows from (i).
(iii) : It follows from (i) and (ii) .�
De�nition
Let M be semimodule over a semiring R. For two elements a 2 R and

m 2 M , the pair (a;m) is said to be compatible if the equation ax = m, has
a solution in an extension of M .

Lemma 3.3
Let M be a cancellative semimodule over a cancellative semiring R. The

following statements are equivalent for two elements a 2 R and m 2M :
(i) The pair (a;m) is compatible
(ii) There is a homomorphism g : Ra!M such that g(a) = m.
Proof.
(i) ) (ii) There is xo in an extension of M such that axo = m. So, if

x = ra = ta 2 Ra, then rm = raxo = taxo = tm. Thus we may de�ne
g : Ra ! M by g(ra) = rm. Of course, g is a homomorphism and g(a) =
g(1a) = m .
(ii) ) (i): Let I = Ra; g : I ! M and g(a) = m. We prove that there is

an extension V of M and there is xo 2 V such that axo = m in V . Let i be
the inclusion mapping of I into R and consider the homomorphism � = �Mg :
I ! M ! M4 and � = �Ri : I ! R! R4. We de�ne f : I ! M4 � R4 by
f(t) = (�(t);��(t)) Note that N = f(I) is a subsemimodule ofM4�R4 and
N induces an R-congruence relation �Bourne relation�onM4�R4. Let V be
the factor semimodule M4�R4=N . Let � :M !M �R!M4�R4 ! V ;
u 7! (u; 0) 7! (�M(u); 0) 7! (�M(u); o)=N and � : R!M�R!M4�R4 !
V ;r 7! (0; r) 7! (0; �R(r)) 7! (0; �R(r))=N .
We show that � is injective: Suppose �(u) = �(v). Then (�M(u); 0)=N =

(�M(v); o)=N and so there are n1; n2 2 N such that (�M(u); 0)+n1 = (�M(v); o)+
n2.If n1 = f(t1); n2 = f(t2), then we get �M(u) + �(t1) = �M(v) + �(t2) and
��(t1) = ��(t2).
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Since � is injective andM is cacellative, then �M(u) = �M(v), and so u = v.
This means that V is an extension of M . We prove that �(1) is a solution of
the equation ax = m in V , i.e. a�(1) = �(m).
Since (0; �R(a))+f(a) = (0; �R(a))+(�(a);��(a)) = (�(a); 0) = (�M(g(a)); 0) =

(�M(m); 0) = (�M(m); 0) + f(0), then (0; �R(a)=N = (�M(m); o)=N .Thus,
�(a) = �(m), and so a�(1) = �(m).�
De�nition [1]
An R-semimodule M is called P -injective if for any principal ideal I of R

and each homomorphism g : I ! M ,there exists a homomorphism f : R !
M ,which extends g.

Corollary 3.4
Every cancellative AP semimodule M over a cancellative semiring R is P -

injective.

Proof.
Let I = Ra ; a 2 R ,and g : I !M be a homomorphism . By the preceding

Lemma the equation ax = g(a) has a solution in an extension N of M , say ,
� :M ! N .SinceM is AR , � is pure and so the equation ax = g(a) has a
solutionmo 2M .We de�ne a homomorphism h : R!M , by h(r) = r mo:For
any x = ta 2 I ; g(x) = tg(a) = tamo = h(x):Hence,h extends g and so M is
P -injective .�

Corollary 3.5
Let M be a cancellative semimodule over a cancellative semiring R .The

following statements are equivalent:
(i) M is P -injective.
(ii)For any compatible pair (a;m) 2 R �M , the equation ~ "ax = m "

has a solution in M .
Proof.
(i) =) (ii) : Suppose (a;m) is compatible .By Lemma 3.3 , there is a

homomorphism g : Ra ! M such that g(a) = m. Since M is P -injective
, there is a homomorphism f : R ! M , extends g. Observe that ah(1) =
h(a:1) = h(a) = g(a) = m ,and so h(1) 2M is a solution of ~:
(ii) =) (i) :Let I = Ra ; a 2 R , g : I ! M be any homomorphism and

mo = g(a):By Lemma 3.3, the equation ax = mo has a solution in an extension
ofM .Under the hypothesis (ii), this equation has a solution uo 2M:We de�ne
a homomorphism h : R ! M ,by h(r) = ruo:One easily sees that h extends
g:�

Proposition 3.6
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Every pure subsemimoduleM of a P -injective semimodule N is P -injective
.
Proof.
Let I = Ra ; a 2 R ,and g : I ! M be a homomorphism.Since i : M �

N ;and N is P -injective , there exists a homomorphism f : R ! N ,which
extends g .Hence , i g(a) = g(a) = f(a) = mo 2 M:Let f (1) = no 2 N and
consider the equation ~ : ax = mo:Since ano = af(1) = f(a:1) = f(a) = mo

, then ~ has a solution in N:Observe that i :M � N is pure
and so ~ has a solution uo 2 M ( i.e. auo = mo ).Now,de�ne a homo-

morphism h : R ! M ;by h(r) = ruo:Since h(ra) = rauo = rmo = rg(a) =
g(ra) ;then h extends g and so M is P -injective.�
In [14 , Thm.5],it was proved that the �rst order theory T of cancellative

semimodules over an arbitrary semiring R has the amalgamation property. As
an application we have :
Proposition 3.7.
Every pure subsemimoduleM of a cancellative AP semimodule N is AP in

the class of cancllative semimoules.

Proof.
Consider the following diagram , where f1; f2 are the identical inclusions

,f1 is pure and H is a cancellative semimodule

N
f1

%
M

&
f2

:

H

Let (~) "Ax+m = Bx+m0 " be a �nite system of linear equations with
coe¢ cents in R and parameters from M and with a solution in H .By[14 ,
Thm.5], there is a cancellative semimodule F and embeddings gi ; i = 1; 2;such
that
the following diagram is commutative.

N
f1

%
g1

&
M F

&
f2

%
g2

H
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It follows that (~)has a solution in F . Since f1and g1are pure , (~) has a
solution in M and so M is AP in the class of cancellative semimodules.�

Theorem 3.8.
(i) If X0 � X1 � ::: � X� � :::; � � � is a chain of AP semimodules ,

where � is an ordinal , then the union of the chain is AP.
(ii) Every semimodule has a maximal AP subsemimodule .
Proof.

(i) Let M = [X� and suppose that M � N:Let (~) : Ax+m = Bx+m0

be a �nite system of linear equations with coe¢ cents in R and parameters from
M and with a solution in N:There is an ordinal 
 such that the elements of the
column matrices m and m0 are in X
 � M � N :Therefore one can consider
~ as a �nite system of linear equations with coe¢ cents in R and parameters
fromX
 and with a solution inN :SinceX
 � N , ~ has a solution inX
 �M:

(ii) Given a semimodule E , consider the set 
 of all subsemimodules
of E that are AP semimodules.Observe that 
 is not empty , for the zero
semimodule belongs to 
:Partially order 
 by inclusion.If F is a chain in 

then [F is AP by (i).Now the result follows by applying Zorn�s Lemma. �
4. SAP Semimodules
In [2] , Azumaya introduced the notion of locally split homomorphisms to

study regular modules. Locally split submodules were introduced by Rama-
murthi and Rangaswamy [9], by the name of strongly pure submodules, to
study strongly absolutely pure (SAP) and �nitely injective ( f -injective in the
sense of [13] ) modules. In this section we extend these notions for semimodules
over an arbitrary semiring.Let R be a semiring and M be an R-semimodule
M is said to be �nitely injective ( f -injective for short ) if givn any injec-

tive homomorphism F ! Y;where F is a �nitely generated semimodule, any
homomorphism F ! M can be extended to a homomorphism Y ! M:Note
that every injective semimodule is f -injective. We call a subsemimodule M
of a semimodule N strongly pure if to any �nite set {m1; :::;mkg of elements
of M there exists a homomorphism � : N ! M such that �(mi) = mi

,i = 1; :::; k:Finally, a semimodule M is said to be strongly absolutely pure
(SAP for short ) if M is stongly pure in every R-semimodule containg it as a
subsemimodule .
Proposition 4.1
Suppose that E;F and G are semimodules over a semiring R such that

E � F � G .
(i) If E is strongly pure in F and F is strongly pure in G then E is strongly

pure in G .
(ii) If E is strongly pure in G then E is strongly pure in F .
(iii) If E is strongly pure in F then E is pure in F .
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(iv) If E is pure in F ,where F is a projective semimodule,then E is strongly
pure in F:
(v) If E is pure in F ,where E is �nitely generated and F is projective,then

E is projective.

Proof.
(i) and (ii) are obvious. (iii) : Let (~) "Ax + u = Bx + v " be a �nite

system of linear equations with coe¢ cents in R and parameters from E and
with a solution c in F .Let {u1; :::; ut; v1; :::; vtg � E be the elements of
the column matrices u ; v :Under the hypothesis,there exists a homomorphism
� : F ! E , such that
�(ui) = ui ; �(vi) = vi . It follows thatA �(c) + u = B �(c) + v ,and so

�(c) is solution of ~ in E :(iv): If f : E � F is pure, then by Lemma 1,there is
an ultra�lter u over an in�nite set I and a homomrphism h : F ! EI=u such
that h f = � ;where � : E ! EI=u is the diagonal embedding of E into an
ultrapower of E:Let � : EI ! EI=u be the canonical homomorpism.Since F
is projective ,there exists a homomorphism g : F ! EI such that �g = h:Let
fe1; :::; eng be a �nite
set of elements of E. For each ek ; 1 � k � n , = �(ek) = h(ek) = �g (ek) =

g (ek)=u:Hence there exists a set 
k 2 u suchs that (g (ek))(i) = ek for all i 2

k:Let 
 = \ 
k 2 u , and de�ne a homomorphism � = pi g : F ! EI ! E ,
where pi is the canonicl projection , i 2 
:It follows that �(ek) = ek ; 1 � k � n
,and so E is strongly pure in F .
(v) : Let fe1; :::; eng be a �nite set of generators of E:Since E � F is

strongly pure , there exists a homomorphism � : F ! E such that �(ei) =
ei ; i = 1; :::; n:It follows that E is a retract of F and so E is projective.�
Corollary 4.2
Every SAP semimodule is AP
Proposition 4.3
Let R be a semiring ,N be an R- module and M be a subsemimodule of

N .The following statements are equivalent :
(i) M � N is strongly pure.
(ii) M � N is pure and for any element xo 2 M there exists a homo-

morphism
� : N !M such that �(xo) = xo:
Proof.
(i)=) (ii) follows from Proposition 4.1.
(ii)=) (i) :By Lemma 3.2(i)M is a module . Let {x1; :::; xng be any �nite

set of elements ofM :We prove by induction, suppose n � 2 and our statement
is true for n � 1:This means that there is a homomorphism � : N ! M such
that �(xk) = xk for k = 1; 2; :::; n � 1:Since (xn � �(xn) ) 2 M , there is a
� : N ! M such that �(xn � �(xn)) = xn � �(xn) .Let � = � + � � �i �
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: N ! M ;where i : M � N is the inclusion map.Then for any k; k =
1; 2; :::; n�1; �(xk) = �(xk)+�(xk)��i �(xk) = xk+�(xk)��(xk) = xk:And
�(xk) = �(xn) + �(xn) � �i �(xn) = �(xn) + �(xn � �(xn)) = �(xn) + xn �
�(xn) = xn:Thus M is strongly pure in N .�

The following result connects �nite injectivity with strong purity.
Proposition 4.4
Every f -injective semimodule is SAP.
Proof.
Let M � N , where M is an f -injective semimodule.For any �nite set

T ={m1; :::;mkg of elements of M , let F be the semimodule generated by
T:Consider the inclusion maps f : F � N and j : F ! M:There exists a
homomorphism � : N ! M ,such that �f = j :Observe that �(x) = x;for all
x 2 F , and so M is SAP.�
Proposition 4.5
Every f -injective semimoduleM contains an injective hull of each of its

�nitely generated subsemimodule.
Proof.
Let F �M be a �nitely generated subsemimodule of M with an injective

hull E. Consider the inclusion maps i : F � M and j : F � E:Since M is
f -injective semimodule,there exists a homomorphism h : E ! M such that
hj = i. Observe that h is injective since i is injective and j is essential.�
Corollary 4.6
Every �nitely generated f -injective semimodule M is injective.
Theorem 4.7
(i) If X0 � X1 � ::: � X� � :::; � � � is a chain of f -injective

semimodules , where � is an ordinal , then the union of the chain is f -injective.
(ii) Every semimodule has a maximal f -injective subsemimodule
(iii) A semimodule M is f -injective if and only if M = lim

!
Xi ,where the

Xi are injective semimodules and the morphisms of the directed system {Xi

}are injective.
Proof.
We prove only (iii). Note that M = lim

!
f Fi ; �ij g; i; j 2 I ,where f Fi g is

the family of all �nitely generated subsemimodules of M and the morphisms
f �ij gare the inclusion maps.Since M is f -injective,it contains an injective
hull bFi of each Fi . One can easily check thatM = [ bFi and the �ij : Fi ! Fj
induce injective homomorphisms c�ij : bFi !cFj ,such that { bFi; �ijg is a directed
system and M = lim

!
f bFi g:�

Remark. 4.1
If R is a ring ,then it is well-known that every R -module is contained in

an injective R- module. However ,for arbitraty semirings R this not the case
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; e.g. there are no nonzere injective N -semimodules. In [11],H.Wang proved
that every R -semimodule has an injective hull ,in the case that R is additvely
idempotent (i.e. a semiring satisfying r + r = r for all r 2 R):For these
semirings we prove the convrse of Proposition 4.4.
Theorem 4.8
Let R be an additvely idempotent semiring.Then an R-semimodule M is

f -injective if and only if M is SAP.
Proof.
Suppose M is SAP. Let i : E � Y;with E �nitely generated by fe1; :::; eng

and g : E ! M .Let cM be the injetive hull of M and j : M ! cM .Since cM
is injective , there is h : Y ! cM , such that hi = jg :Note that fg(ek) : 1 �
k � ng �M andM is SAP . Hence there exists a homomorphism � : cM !M
such that �(g(ek)) = g(ek) ; 1 � k � n:One can easily show
that � = �h extends g and so M is f -injective.�
5. Regular Semimodules

A semiring R is said to be von Neumann regular if for each a 2 R, there
is some b 2 R such that a = aba. In [6], Fieldhouse generalized the concept of
Von Neumann�s regular rings to the module case : a module M ( over a ring
) is said to be regular if every submodule of M is pure in M . We extend this
concept to semimodules ove an arbitrary semiring R:An R- semimodule M is
said to be Fieldhouse regular if every subsemimodule of M is pure in M .
Theorem 5.1
For any R- semimodule M the following statements are equivalent :
(i) M is Fieldhouse regular.
(ii) Every �nitely generated subsemimodule of M is pure in M:
If M is projective one can add :
(iii) Every �nitely generated subsemimodule of M is a retract of M:
Proof.
(i)=) (ii) is trivial.
(ii)=) (i) : Let E � M . Note that E = lim

!
f Fi ; �ij g; i; j 2 I ,where

f Fi g is the family of all �nitely generated subsemimodules of M and the
morphisms f �ij gare the inclusion maps.To show that E is pure in M ,
let (~) "Ax + u = Bx + v " be a �nite system of linear equations with
coe¢ cents in R and parameters from E and with a solution m in M . Let
{u1; :::; ut; v1; :::; vtg � E be the elements of the column matrices u ; v:
There is k 2 I such that{u1; :::; ut; v1; :::; vtg � Fk � E � M :Therefore

one can consider ~ as a �nite system of linear equations with coe¢ cents in R
and parameters fromFk and with a solution in M:SinceFk is pure M , ~ has
a solution in
Fk . Thus E is pure in M and so M is Fieldhouse regular. Now suppose

M is projective Fieldhouse regular and E is a �nitely generated subsemimodule
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of M :Let fe1; :::; eng be a �nite set of generators of E:By Proposition 4.1,
E � M is strongly pure , thus there exists a homomorphism � : M ! E

such that �(ei) = ei ; i = 1; :::; n:It follows that E is a retract of M .�

Corollary 5.2
For any semiring R consider the following statements :
(i) Every ideal of R is stongly pure in RR
(ii) RR is Fieldhouse regular.
(iii) Every principal ideal of R is pure in R.
(iv) R is Von Neumann regular.
Then (i) () (ii) =) (iii) () (iv).
Proof.
(i)=)(ii) and (ii) =) (iii) are tivial . (ii) =) (i ) follows from

Proposition 4.1.
(iii) =) (iv) : For each a 2 R , Ra is a pure subsemimodule of the R-

semimodule RR.The equation ax+ 0 = 0x+ a, with parameters from Ra, has
a solution (x = 1) in RR. So, it has a solution in Ra. This means that there
is xo = ra 2 Ra, for some r 2 R, such that axo = a :Thus ara = a, and so R
is von Neumann regular

(iv) ) (iii): Suppose R is von Neumann regular and I = Ra. There is
b 2 R such that a = aba. Let e = ba and note that e2 = baba = ba = e. Hence
I = Re.If � : Re! RR is the inclusion map and � :R R! Re, �(r) = re, then
�� = 1Re
This means that I = Re is a retract of RR, and, in particular, I is pure in

R:�

Corollary 5.3
If every R-semimodule is AP then R is von Neumann regular.
Remark 5.1
For any ring R, the converse of the precding Corollary is true [5].On the

other hand, the semiring R = Q+ is von Neumann regular and M = RR is
not AP.
Remark 5.2
For any cancellative semiring R the following statements are equivalent :
(i) Every R- semimodule is AP.
(ii) Every cancellative R�semimodule is AP.
(iii) R is a regular ring.
Semimodules over rins are modules, so (iii) =) (i) follows . (i) =)(ii) is

obvious.
Now suppose (ii) , then RR is a module ,i.e. R is a ring.Indeed, R is a

regular ring.
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