International Journal of Algebra, Vol. 6, 2012, no. 1, 1 - 13

^{1,2}King Abdulaziz University, Sciences Faculty For Girls, Department of Mathematics, Jeddah 21413, K.S.A.
³Cairo University, Faculty of Science , Department of Mathematics, Giza , Egypt

Absolutely Pure Semimodules

Maher Zayed¹, Sabah A. Bashammakh² and A. Y. Abdelwanis³

^{1,2}King Abdulaziz University, Sciences Faculty For Girls Departement of Mathematics, Jeddah 21413, Saudi Arabia

> ³Cairo University, Faculty of Science Departement of Mathematics, Giza, Egypt

¹e-mail: profmaher@ymail.com ²e-mail: s_ahmad_a_b@yahoo.com ³e-mail: ahmedyones2@yahoo.com

Abstract. In the present paper, a semimodule M over a semiring R is called absolutely pure if it is pure in every semimodule containing it as a subsemimodule. Some well-known properties of absolutely pure modules are extended to semimodules. We introduce and study two particular subclasses of absolutely pure semimodules, namely strongly absolutely pure (SAP) and finitely injective (f-injective) semimodules. When the semiring R is additively idempotent ,the SAP R-semimodules are exactly the f-injective semimodules. A characterization of Fieldhouse regular semimodules is obtained.

Mathematics Subject Classification: 16Y60, 16B70

Keywords: absolutely pure semimodule, f-injective semimodule, Fieldhouse regular semimodule

Introduction

The notion of purity in module theory was defined in terms of tensor product. In [3, Thm. 2.4], P.M. Cohn proved that a submodule M of a left module N (over a ring R) is pure if every finite system of linear equations $H\overline{x} = \overline{m}$ with coefficients in R and parameters from M is solvable in M if it is solvable in N. Generally, if A and B are L-structures, where L is a first-order language, a homomorphism $f: A \to B$ is said to be pure if for any positive primitive formula ϕ and any tuple \bar{a} from A, the validity of $\phi(f(\bar{a}))$ in B entails that of $\phi(\bar{a})$ in A [12]. This notion of purity was applied to semimodules over an arbitrary semiring and the existence of pure-injective semimodules was proved [14, Thm.3]. In fact, one can easily show that a subsemimodule M of a left semimodule N (over a semiring R) is pure if every finite system of linear equations $H\overline{x} + \overline{m} = K\overline{x} + \overline{m}'$ with coefficients in R and parameters from M and with a solution in N already has a solution in M. In the present paper, a semimodule M is called absolutely pure if it is pure in every semimodule containing it as a subsemimodule. Some well-known properties of absolutely pure modules are extended to semimodules .For example, every semimodule has a maximal absolutely pure subsemimodule. We introduce and study two particular subclasses of absolutely pure semimodules, namely strongly absolutely pure (SAP) and finitely injective (f-injective) semimodules. A semimodule Mis f- injective if and only if $M = \lim X_i$, where the X_i are injective semimodules and the morphisms of the directed system $\{X_i\}$ are injective. When the semiring R is additively idempotent, the SAP R-semimodules are exactly the f-injective semimodules. A characterization of Fieldhouse regular semimodules is obtained.

1. Purity in Model theory

In this section, structure means structure for a given finitary similarity type and L is the first-order language of that similarity type. For the basic concepts of model theory we refer to [8]. Let us recall that if A and B are L-structures, a homomorphism $f: A \to B$ is said to be pure if for any positive primitive (p.p. for short) formula and any tuple \bar{a} from A, the validity of $\phi(f(\bar{a}))$ in B entails that of $\phi(\bar{a})$ in A [12]. Note that every pure map is an isomorphic embedding, therefore these maps are also called pure embeddings. A substructure A of a structure B is called pure if the inclusion of A in B is pure.Elementary embeddings, that is, embeddings that preserve all first-order formulas, are clearly pure.

Lemma 1.1 [10]

Let A and B be two L-structures. The following conditions are equivalent for any embedding $f : A \to B$.

(i) f is pure

(ii) There is an elementary embedding $g : A \to C$ that factors through f (i.e. there is a homomorphism $h : B \to C$ such that g = hf).

Remark 1.1

In (ii) above g can be taken to be the diagonal embedding of A into an appropriate ultrapower of A [4, Th.6.4].

2. Purity in Semimodule Theory.

Let R = (R; +, ., 0, 1) be a semiring, i.e. (R; +, 0) is a commutative monoid with identity 0, (R; ., 1) is a monoid with identity 1, for all $a, b, c \in R$, a(b+c) =a.b + a.c and (b + c).a = b.a + c.a, 0.r = 0 = r.0 for all $r \in R$, and $0 \neq 1$. Let R be a semiring. A left R-semimodule is a commutative monoid (M; +, 0)for which we have a function $R \times M \to M$, denoted by $(r, m) \longmapsto r m$ and called scaler multiplication, which satisfies the following conditions for all elements r and s of R and all elements m and n of M: (1) (rs)m = r(sm);(2) r(m+n) = rm + rn; (3) (r+s)m = rm + sm; (4) 1 m = m; (5) r0 = 0 = 0 m. An element m of M is cancellable if m + m' = m + m'' implies that m' = m''. The semimodule M is cancellative if every element of M is cancellable. If every element $m \in M$ has an additive inverse $m' \in M$, the semimodule M is called an R-module. For the basic concepts of semirings and semimodules we refer to [7]. Throughout this paper, semimodule means left semimodule over R. By ideal we mean a left ideal of R. By homomorphism, we mean an R-homomorphism. We consider the one-sorted first-order language L_R of left semimodules over a fixed arbitrary semiring R. Recall that a p.p. formula $\phi(\overline{x})$ is a formula of the form

$$\phi(\overline{x}) = \phi(x_1, ..., x_n) = \exists y_1 ... y_m(\bigwedge_{i=1}^t \Psi_i(\overline{x}, \overline{y})),$$

where $\overline{y} = (y_1, ..., y_m)$ and $\Psi_i(\overline{x}, \overline{y})$ are atomic formulas, i = 1, ..., t.

One can easily show that every atomic formula $\Psi(x_1, ..., x_n)$ of L_R is equivalent, modulo the theory of semimodules, to an equation

$$\sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} b_i x_i,$$

where a_i, b_i are semiring elements. So, the p.p. formula $\phi(\overline{x})$ can be read as saying there are elements \overline{y} such that $A\overline{x} + B\overline{y} = C\overline{x} + D\overline{y}$, where A, C are matrices (over R) of size $t \times n$, B, D are matrices of size $t \times m$, and $\overline{x}, \overline{y}$ are read as column matrices of semimodule elements. Let M, N be two R-semimodules and $f: M \to N$ be a pure embedding. This means that f is an injective Rhomomorphism, and for any p.p. formula $\phi(\overline{x})$ and each tuple \overline{m} from M, if there is a column matrix \overline{b} (of elements of N) such that $Af(\overline{m}) + B\overline{b} = Cf(\overline{m}) + D\overline{b}$ then there is a column matrix \overline{c} (of elements of M) such that $A \overline{m} + B \overline{c} = C \overline{m} + D \overline{c}$ where $f(\overline{m}) = (f(m_1), ..., f(m_k)).$

The following results follow from the definition of purity.

Lemma 2.1

Let $\phi(\overline{x})$ be a p.p. formula in L_R and M be an R-semimodule. Then (i) $M \vDash \phi(\overline{0})$.

(ii) If $M \vDash \phi(\overline{a})$ and $M \vDash \phi(\overline{b})$, then $M \vDash \phi(\overline{a} + \overline{b})$.

(iiii) If $r \in C(R)$, the center of R, and $M \models \phi(\overline{a})$, then $M \models \phi(r\overline{a})$, where $r\overline{a} = r(a_1, ..., a_n) = (ra_1, ..., ra_n)$.

(iv) $\phi(M) = \{\overline{a} \in M^n : M \vDash \phi(\overline{a})\}\$ is a submonoid of $(M^n, +)$.

(v) If R is commutative, $\phi(M)$ is a subsemimodule of $(M^n, +)$.

(vi) If M is an R-module, $\phi(M)$ is a subgroup of $(M^n, +)$.

Lemma 2.2

Suppose that E, F and G are semimodules over a semiring R such that $E \subset F \subset G$.

(i) If E is pure in F and F is pure in G then E is pure in G.

(ii) If E is pure in G then E is pure in F.

3. Absolutely Pure Semimodules

Let R be a semiring and M be an R-semimodule. If W is the subsemimodule of $M \times M$ defined by $W = \{(m,m) | m \in M\}$ then W induces an R-congruence relation \equiv_W on $M \times M$, called the Bourne relation, defined by setting $(m,n) \equiv_W (m',n')$ if and only if there exist elements w and w' of W such that (m,n) + w = (m',n') + w'.

If $(m,n) \in M \times M$ then we write (m,n)/W instead of $(m,n)/\equiv_W$. The factor semimodule $M \times M/\equiv_W$ is denoted by $M \times M/W$. Since for all $(m,n) \in M \times M$ we have (m,n)/W + (n,m)/W = (0,0)/W, then $M \times M/W$ is an *R*-module. This left *R*-module, denoted by M^{Δ} , is called the *R*-module of differences of M.

Lemma 3.1 [7]

(i) A subsemimodule of a cancellative semimodule is cancellative.

(ii) Given a semimodule M, there is a homomorphism ξ_M of M into M^{Δ} , defined by $\xi_M(m) = (m, 0)/W$.

(iii) ξ_M is an embedding if and only if M is cancellative .

Definition

Let Γ be a class of *R*-semimodules. A semimodule $M \in \Gamma$ is said to be absolutely pure (AP), in Γ , if every embedding of *M* into a semimodule from Γ , is pure . When Γ is the class of all *R*-semimodules, *M* is said to be AP.

Lemma 3.2

(i) A pure subsemimodule M of a module N is a module.

(ii) ξ_M is a pure embedding if and only if M is a module over the semiring R.

(iii) Any cancellative AP semimodule is a module.

Proof.

(i): Consider the p.p.formula $\phi(x_1) = \exists x_2(x_1 + x_2 = 0)$, and $m \in M$. Since N is a module ,then $N \models \phi(m)$, and so $M \models \phi(m)$. This means that m has an additive inverse in M.

(ii) : The "if" part follows from [7, Prop. 14.1] and Lemma 1. The "only if " part follows from (i).

(iii) : It follows from (i) and (ii) \Box

Definition

Let M be semimodule over a semiring R. For two elements $a \in R$ and $m \in M$, the pair (a, m) is said to be compatible if the equation ax = m, has a solution in an extension of M.

Lemma 3.3

Let M be a cancellative semimodule over a cancellative semiring R. The following statements are equivalent for two elements $a \in R$ and $m \in M$:

(i) The pair (a, m) is compatible

(ii) There is a homomorphism $g: Ra \to M$ such that g(a) = m.

Proof.

(i) \Rightarrow (ii) There is x_o in an extension of M such that $ax_o = m$. So, if $x = ra = ta \in Ra$, then $rm = rax_o = tax_o = tm$. Thus we may define $g : Ra \to M$ by g(ra) = rm. Of course, g is a homomorphism and g(a) = g(1a) = m.

(ii) \Rightarrow (i): Let $I = Ra, g : I \to M$ and g(a) = m. We prove that there is an extension V of M and there is $x_o \in V$ such that $ax_o = m$ in V. Let i be the inclusion mapping of I into R and consider the homomorphism $\alpha = \xi_M g :$ $I \to M \to M^{\triangle}$ and $\beta = \xi_R i : I \to R \to R^{\triangle}$. We define $f : I \to M^{\triangle} \times R^{\triangle}$ by $f(t) = (\alpha(t), -\beta(t))$ Note that N = f(I) is a subsemimodule of $M^{\triangle} \times R^{\triangle}$ and N induces an R-congruence relation "Bourne relation" on $M^{\triangle} \times R^{\triangle}$. Let V be the factor semimodule $M^{\triangle} \times R^{\triangle}/N$. Let $\lambda : M \to M \times R \to M^{\triangle} \times R^{\triangle} \to V$; $u \mapsto (u, 0) \mapsto (\xi_M(u), 0) \mapsto (\xi_M(u), o)/N$ and $\mu : R \to M \times R \to M^{\triangle} \times R^{\triangle} \to V$; $r \mapsto (0, r) \mapsto (0, \xi_R(r)) \mapsto (0, \xi_R(r))/N$.

We show that λ is injective: Suppose $\lambda(u) = \lambda(v)$. Then $(\xi_M(u), 0)/N = (\xi_M(v), o)/N$ and so there are $n_1, n_2 \in N$ such that $(\xi_M(u), 0) + n_1 = (\xi_M(v), o) + n_2$. If $n_1 = f(t_1), n_2 = f(t_2)$, then we get $\xi_M(u) + \alpha(t_1) = \xi_M(v) + \alpha(t_2)$ and $-\beta(t_1) = -\beta(t_2)$.

Since β is injective and M is cacellative, then $\xi_M(u) = \xi_M(v)$, and so u = v. This means that V is an extension of M. We prove that $\mu(1)$ is a solution of the equation ax = m in V, i.e. $a\mu(1) = \lambda(m)$.

Since $(0, \xi_R(a)) + f(a) = (0, \xi_R(a)) + (\alpha(a), -\beta(a)) = (\alpha(a), 0) = (\xi_M(g(a)), 0) = (\xi_M(m), 0) = (\xi_M(m), 0) + f(0)$, then $(0, \xi_R(a)/N = (\xi_M(m), o)/N$. Thus, $\mu(a) = \lambda(m)$, and so $a\mu(1) = \lambda(m)$. \Box

Definition [1]

An *R*-semimodule *M* is called *P*-injective if for any principal ideal *I* of *R* and each homomorphism $g: I \to M$, there exists a homomorphism $f: R \to M$, which extends *g*.

Corollary 3.4

Every cancellative AP semimodule M over a cancellative semiring R is P-injective.

Proof.

Let I = Ra, $a \in R$, and $g: I \to M$ be a homomorphism. By the preceding Lemma the equation ax = g(a) has a solution in an extension N of M, say, $\lambda: M \to N$. Since M is AR , λ is pure and so the equation ax = g(a) has a solution $m_o \in M$. We define a homomorphism $h: R \to M$, by $h(r) = r m_o$. For any $x = ta \in I$, $g(x) = tg(a) = tam_o = h(x)$. Hence, h extends g and so M is P-injective . \Box

Corollary 3.5

Let M be a cancellative semimodule over a cancellative semiring R. The following statements are equivalent:

(i) M is P-injective.

(ii) For any compatible pair $(a,m)\in R\times M$, the equation $\circledast \ "ax=m$ " has a solution in M .

Proof.

(i) \implies (ii) : Suppose (a, m) is compatible .By Lemma 3.3, there is a homomorphism $g : Ra \to M$ such that g(a) = m. Since M is P-injective, there is a homomorphism $f : R \to M$, extends g. Observe that ah(1) = h(a.1) = h(a) = g(a) = m, and so $h(1) \in M$ is a solution of \circledast .

(ii) \implies (i) :Let I = Ra, $a \in R$, $g : I \to M$ be any homomorphism and $m_o = g(a)$.By Lemma 3.3, the equation $ax = m_o$ has a solution in an extension of M.Under the hypothesis (ii), this equation has a solution $u_o \in M$.We define a homomorphism $h : R \to M$, by $h(r) = ru_o$.One easily sees that h extends $g.\Box$

Proposition 3.6

6

Every pure subsemimodule M of a P-injective semimodule N is P-injective

Proof.

Let I = Ra, $a \in R$, and $g: I \to M$ be a homomorphism. Since $i: M \subset N$, and N is P-injective, there exists a homomorphism $f: R \to N$, which extends g. Hence, $i g(a) = g(a) = f(a) = m_o \in M$. Let $f(1) = n_o \in N$ and consider the equation $\circledast : ax = m_o$. Since $an_o = af(1) = f(a.1) = f(a) = m_o$, then \circledast has a solution in N. Observe that $i: M \subset N$ is pure

and so \circledast has a solution $u_o \in M$ (i.e. $au_o = m_o$).Now,define a homomorphism $h: R \to M$, by $h(r) = ru_o$.Since $h(ra) = rau_o = rm_o = rg(a) = g(ra)$, then h extends g and so M is P-injective. \Box

In [14, Thm.5], it was proved that the first order theory T of cancellative semimodules over an arbitrary semiring R has the amalgamation property. As an application we have :

Proposition 3.7.

Every pure subsemimodule M of a cancellative AP semimodule N is AP in the class of cancellative semimoules.

Proof.

Consider the following diagram , where f_1, f_2 are the identical inclusions f_1 is pure and H is a cancellative semimodule

$$M \xrightarrow{f_1} N$$

$$M \xrightarrow{f_2} H$$

Let (*) " $A\overline{x} + \overline{m} = B\overline{x} + \overline{m}'$ " be a finite system of linear equations with coefficients in R and parameters from M and with a solution in H.By[14, Thm.5], there is a cancellative semimodule F and embeddings g_i , i = 1, 2, such that

the following diagram is commutative.

It follows that (\circledast) has a solution in F. Since f_1 and g_1 are pure, (\circledast) has a solution in M and so M is AP in the class of cancellative semimodules.

Theorem 3.8.

(i) If $X_0 \subset X_1 \subset ... \subset X_\beta \subset ..., \beta \prec \alpha$ is a chain of AP semimodules, where α is an ordinal, then the union of the chain is AP.

(ii) Every semimodule has a maximal AP subsemimodule.

Proof.

(i) Let $M = \bigcup X_{\beta}$ and suppose that $M \subset N$.Let $(\circledast) : A\overline{x} + \overline{m} = B\overline{x} + \overline{m}'$ be a finite system of linear equations with coefficients in R and parameters from M and with a solution in N.There is an ordinal γ such that the elements of the column matrices \overline{m} and \overline{m}' are in $X_{\gamma} \subset M \subset N$.Therefore one can consider \circledast as a finite system of linear equations with coefficients in R and parameters from X_{γ} and with a solution in N.Since $X_{\gamma} \subset N$, \circledast has a solution in $X_{\gamma} \subset M$.

(ii) Given a semimodule E, consider the set Ω of all subsemimodules of E that are AP semimodules. Observe that Ω is not empty, for the zero semimodule belongs to Ω . Partially order Ω by inclusion. If \mathcal{F} is a chain in Ω then $\cup \mathcal{F}$ is AP by (i). Now the result follows by applying Zorn's Lemma. \Box

4. SAP Semimodules

In [2], Azumaya introduced the notion of locally split homomorphisms to study regular modules. Locally split submodules were introduced by Ramamurthi and Rangaswamy [9], by the name of strongly pure submodules, to study strongly absolutely pure (SAP) and finitely injective (f-injective in the sense of [13]) modules. In this section we extend these notions for semimodules over an arbitrary semiring.Let R be a semiring and M be an R-semimodule

M is said to be finitely injective (f-injective for short) if givn any injective homomorphism $F \to Y$, where F is a finitely generated semimodule, any homomorphism $F \to M$ can be extended to a homomorphism $Y \to M$. Note that every injective semimodule is f-injective. We call a subsemimodule M of a semimodule N strongly pure if to any finite set $\{m_1, ..., m_k\}$ of elements of M there exists a homomorphism $\alpha : N \to M$ such that $\alpha(m_i) = m_i$, i = 1, ..., k. Finally, a semimodule M is said to be strongly absolutely pure (SAP for short) if M is stongly pure in every R-semimodule containg it as a subsemimodule.

Proposition 4.1

Suppose that E, F and G are semimodules over a semiring R such that $E \subset F \subset G$.

(i) If E is strongly pure in F and F is strongly pure in G then E is strongly pure in G.

(ii) If E is strongly pure in G then E is strongly pure in F.

(iii) If E is strongly pure in F then E is pure in F.

(iv) If E is pure in F, where F is a projective semimodule, then E is strongly pure in F.

(v) If E is pure in F, where E is finitely generated and F is projective, then E is projective.

Proof.

(i) and (ii) are obvious. (iii) : Let (\circledast) " $A\overline{x} + \overline{u} = B\overline{x} + \overline{v}$ " be a finite system of linear equations with coefficients in R and parameters from E and with a solution \overline{c} in F.Let $\{u_1, ..., u_t, v_1, ..., v_t\} \subset E$ be the elements of the column matrices \overline{u} , \overline{v} . Under the hypothesis, there exists a homomorphism $\alpha: F \to E$, such that

 $\alpha(u_i) = u_i$, $\alpha(v_i) = v_i$. It follows that $A \alpha(\overline{c}) + \overline{u} = B \alpha(\overline{c}) + \overline{v}$, and so $\alpha(\overline{c})$ is solution of \circledast in E.(iv): If $f: E \subset F$ is pure, then by Lemma 1, there is an ultrafilter u over an infinite set I and a homomorphism $h: F \to E^I/u$ such that $h \ f = \delta$, where $\delta: E \to E^I/u$ is the diagonal embedding of E into an ultrapower of E.Let $\phi: E^I \to E^I/u$ be the canonical homomorphism.Since F is projective, there exists a homomorphism $g: F \to E^I$ such that $\phi g = h$.Let $\{e_1, ..., e_n\}$ be a finite

set of elements of E. For each e_k , $1 \leq k \leq n$, $= \delta(e_k) = h(e_k) = \phi g(e_k) = g(e_k)/u$. Hence there exists a set $\Omega_k \in u$ suchs that $(g(e_k))(i) = e_k$ for all $i \in \Omega_k$. Let $\Omega = \cap \Omega_k \in u$, and define a homomorphism $\alpha = p_i g: F \to E^I \to E$, where p_i is the canonicl projection, $i \in \Omega$. It follows that $\alpha(e_k) = e_k$, $1 \leq k \leq n$, and so E is strongly pure in F.

(v) : Let $\{e_1, ..., e_n\}$ be a finite set of generators of *E*.Since $E \subset F$ is strongly pure, there exists a homomorphism $\alpha : F \to E$ such that $\alpha(e_i) = e_i$, i = 1, ..., n.It follows that *E* is a retract of *F* and so *E* is projective.

Corollary 4.2

Every SAP semimodule is AP

Proposition 4.3

Let R be a semiring N be an R- module and M be a subsemimodule of N. The following statements are equivalent :

(i) $M \subset N$ is strongly pure.

(ii) $M \subset N$ is pure and for any element $x_o \in M$ there exists a homomorphism

 $\alpha: N \to M$ such that $\alpha(x_o) = x_o$.

Proof.

 $(i) \Longrightarrow (ii)$ follows from Proposition 4.1.

(ii) \Longrightarrow (i) :By Lemma 3.2(i) M is a module . Let $\{x_1, ..., x_n\}$ be any finite set of elements of M. We prove by induction, suppose $n \ge 2$ and our statement is true for n - 1. This means that there is a homomorphism $\alpha : N \to M$ such that $\alpha(x_k) = x_k$ for k = 1, 2, ..., n - 1. Since $(x_n - \alpha(x_n)) \in M$, there is a $\beta : N \to M$ such that $\beta(x_n - \alpha(x_n)) = x_n - \alpha(x_n)$. Let $\delta = \alpha + \beta - \beta i \alpha$: $N \to M$, where $i : M \subset N$ is the inclusion map. Then for any $k, k = 1, 2, ..., n-1, \delta(x_k) = \alpha(x_k) + \beta(x_k) - \beta i \alpha(x_k) = x_k + \beta(x_k) - \beta(x_k) = x_k$. And $\delta(x_k) = \alpha(x_n) + \beta(x_n) - \beta i \alpha(x_n) = \alpha(x_n) + \beta(x_n - \alpha(x_n)) = \alpha(x_n) + x_n - \alpha(x_n) = x_n$. Thus M is strongly pure in N. \Box

The following result connects finite injectivity with strong purity.

Proposition 4.4

Every f -injective semimodule is SAP.

Proof.

Let $M \subset N$, where M is an f-injective semimodule. For any finite set $T = \{m_1, ..., m_k\}$ of elements of M, let F be the semimodule generated by T. Consider the inclusion maps $f : F \subset N$ and $j : F \to M$. There exists a homomorphism $\alpha : N \to M$, such that $\alpha f = j$. Observe that $\alpha(x) = x$, for all $x \in F$, and so M is SAP.

Proposition 4.5

Every f -injective semimodule M contains an injective hull of each of its finitely generated subsemimodule.

Proof.

Let $F \subset M$ be a finitely generated subsemimodule of M with an injective hull E. Consider the inclusion maps $i : F \subset M$ and $j : F \subset E$.Since M is f-injective semimodule, there exists a homomorphism $h : E \to M$ such that hj = i. Observe that h is injective since i is injective and j is essential. \Box

Corollary 4.6

Every finitely generated f-injective semimodule M is injective.

Theorem 4.7

(i) If $X_0 \subset X_1 \subset ... \subset X_\beta \subset ..., \beta \prec \alpha$ is a chain of f -injective semimodules, where α is an ordinal, then the union of the chain is f -injective.

(ii) Every semimodule has a maximal f -injective subsemimodule

(iii) A semimodule M is f-injective if and only if $M = \lim_{\rightarrow} X_i$, where the X_i are injective semimodules and the morphisms of the directed system $\{X_i\}$ are injective.

Proof.

We prove only (iii). Note that $M = \lim_{\to} \{F_i, \alpha_{ij}\}, i, j \in I$, where $\{F_i\}$ is the family of all finitely generated subsemimodules of M and the morphisms $\{\alpha_{ij}\}$ are the inclusion maps. Since M is f-injective, it contains an injective hull \widehat{F}_i of each F_i . One can easily check that $M = \bigcup \widehat{F}_i$ and the $\alpha_{ij} : F_i \to F_j$ induce injective homomorphisms $\widehat{\alpha_{ij}} : \widehat{F}_i \to \widehat{F}_j$, such that $\{\widehat{F}_i, \alpha_{ij}\}$ is a directed system and $M = \lim_{\to} \{\widehat{F}_i\}$. \Box

Remark. 4.1

If R is a ring ,then it is well-known that every R -module is contained in an injective R- module. However ,for arbitrary semirings R this not the case ; e.g. there are no nonzere injective \mathbb{N} -semimodules. In [11],H.Wang proved that every R -semimodule has an injective hull in the case that R is additively idempotent (i.e. a semiring satisfying r + r = r for all $r \in R$). For these semirings we prove the convrse of Proposition 4.4.

Theorem 4.8

Let R be an additively idempotent semiring. Then an R-semimodule M is f-injective if and only if M is SAP.

Proof.

Suppose M is SAP. Let $i: E \subset Y$, with E finitely generated by $\{e_1, ..., e_n\}$ and $g: E \to M$. Let \widehat{M} be the injetive hull of M and $j: M \to \widehat{M}$. Since \widehat{M} is injective, there is $h: Y \to \widehat{M}$, such that hi = jg. Note that $\{g(e_k): 1 \leq k \leq n\} \subset M$ and M is SAP. Hence there exists a homomorphism $\alpha: \widehat{M} \to M$ such that $\alpha(g(e_k)) = g(e_k), 1 \leq k \leq n$. One can easily show

that $\beta = \alpha h$ extends g and so M is f -injective.

5. Regular Semimodules

A semiring R is said to be von Neumann regular if for each $a \in R$, there is some $b \in R$ such that a = aba. In [6], Fieldhouse generalized the concept of Von Neumann's regular rings to the module case : a module M (over a ring) is said to be regular if every submodule of M is pure in M. We extend this concept to semimodules ove an arbitrary semiring R. An R- semimodule M is said to be Fieldhouse regular if every subsemimodule of M is pure in M.

Theorem 5.1

For any R- semimodule M the following statements are equivalent :

(i) M is Fieldhouse regular.

(ii) Every finitely generated subsemimodule of M is pure in M.

If M is projective one can add :

(iii) Every finitely generated subsemimodule of M is a retract of M. **Proof.**

 $(i) \Longrightarrow (ii)$ is trivial.

(ii) \Longrightarrow (i) : Let $E \subset M$. Note that $E = \lim_{\to} \{F_i, \alpha_{ij}\}, i, j \in I$, where $\{F_i\}$ is the family of all finitely generated subsemimodules of M and the morphisms $\{\alpha_{ij}\}$ are the inclusion maps. To show that E is pure in M, let (\circledast) " $A\overline{x} + \overline{u} = B\overline{x} + \overline{v}$ " be a finite system of linear equations with coefficients in R and parameters from E and with a solution \overline{m} in M. Let $\{u_1, ..., u_t, v_1, ..., v_t\} \subset E$ be the elements of the column matrices $\overline{u}, \overline{v}$.

There is $k \in I$ such that $\{u_1, ..., u_t, v_1, ..., v_t\} \subset F_k \subset E \subset M$. Therefore one can consider \circledast as a finite system of linear equations with coefficients in Rand parameters from F_k and with a solution in M. Since F_k is pure M, \circledast has a solution in

 F_k . Thus *E* is pure in *M* and so *M* is Fieldhouse regular. Now suppose *M* is projective Fieldhouse regular and *E* is a finitely generated subsemimodule

of M.Let $\{e_1, ..., e_n\}$ be a finite set of generators of E.By Proposition 4.1,

 $E \subset M$ is strongly pure, thus there exists a homomorphism $\alpha : M \to E$ such that $\alpha(e_i) = e_i$, i = 1, ..., n. It follows that E is a retract of M. \Box

Corollary 5.2

For any semiring R consider the following statements :

(i) Every ideal of R is stongly pure in $_{R}R$

(ii) $_{R}R$ is Fieldhouse regular.

(iii) Every principal ideal of R is pure in R.

(iv) R is Von Neumann regular.

Then (i) \iff (ii) \implies (iii) \iff (iv).

Proof.

 $(i) \Longrightarrow (ii)$ and $(ii) \Longrightarrow (iii)$ are tivial. $(ii) \Longrightarrow (i)$ follows from Proposition 4.1.

(iii) \implies (iv) : For each $a \in R$, Ra is a pure subsemimodule of the R-semimodule RR. The equation ax + 0 = 0x + a, with parameters from Ra, has a solution (x = 1) in RR. So, it has a solution in Ra. This means that there is $x_o = ra \in Ra$, for some $r \in R$, such that $ax_o = a$. Thus ara = a, and so R is von Neumann regular

(iv) \Rightarrow (iii): Suppose *R* is von Neumann regular and *I* = *Ra*. There is $b \in R$ such that a = aba. Let e = ba and note that $e^2 = baba = ba = e$. Hence $I = \text{Re.If } \theta : \text{Re} \to {}_{R}R$ is the inclusion map and $\alpha :_{R} R \to \text{Re}, \alpha(r) = re$, then $\alpha \theta = 1_{\text{Re}}$

This means that I = Re is a retract of $_RR$, and, in particular, I is pure in $R.\square$

Corollary 5.3

If every R-semimodule is AP then R is von Neumann regular.

Remark 5.1

For any ring R, the converse of the precding Corollary is true [5].On the other hand, the semiring $R = \mathbf{Q}^+$ is von Neumann regular and $M = {}_{R}R$ is not AP.

Remark 5.2

For any cancellative semiring R the following statements are equivalent :

(i) Every *R*- semimodule is AP.

(ii) Every cancellative R-semimodule is AP.

(iii) R is a regular ring.

Semimodules over rins are modules, so (iii) \implies (i) follows . (i) \implies (ii) is obvious.

Now suppose (ii) , then $_{R}R$ is a module , i.e. R is a ring. Indeed, R is a regular ring.

References

 [1] [1]J. Ahsan, M. Shabir and H. J. Weinert; Characterizations of semirings by *P*-injective and projective semimodules; Comm. Algebra, 26(7)(1998) 2199-2209, .

[2] G.Azumaya; Some characterizations of regular modules.Publications Mathematiques.34(1990) 241-248

[3]P. M. Cohn; Free products of associative rings ; Math. Z. 71 (1959) 380-398.

[4]P. C. Eklof; Ultraproducts for Algebraists, Ch. A.3 of Handbook of Mathematical Logic, ed. by J. Barwise, studies in Logic 90, North-Holland, Amsterdam, (1977).

[5]P.C.Eklof and G.Sabbagh; Model - Completions and Modules, Ann. Math Logic 2, (1971)251-295.

[6]D. J. Fieldhouse; Pure theories, Math. Ann. 184, (1969), 1-18.

[7]J. S. Golan; the theory of semirings with applications in mathematics and theoretical computer science; Pitman monographs and surveys in pure and appl. Maths., 54, Longman, New York, (1992).

[8]W. Hodges; Model theory, Encyclopedia of Math. and its Appl. 42, Cambridge Univ. Press, Cambridge, (1993).

[9] V.S.Ramamurthi and K.M.Rangaswamy; On finitely injective modules.J.Austtral.Math.Soc.16 (1973) 239-248.

[10]Ph. Rothmaler; Purity in model theory, Advances in algebra and model theory (Essen, 1994; Dresden 1995), 445-469, Algebra Logic Appl, 9, Gordon and Breach, Amsterdam, (1997).

[11] H.Wang; Injective hulls of semimodules over additively- idempotent semirings.Semigroup Forum 48(1990) 337-339.

[12]B. Weglorz; Equationally compact algebras. Fund. Math. 59 (1966) 289-298.

[13] M.Zayed; On *f*-injective modules.Arch.Math.78 (2002) 345-349.

[14] M.Zayed; An application of model theory to semimodules.Logic Journal of IGP. 16(1) (2008) , 99-102.

Received: August, 2011